Orbits of a Fixed-point Subgroup of the Symplectic Group on Partial Flag Varieties of Type A
نویسنده
چکیده
In this paper we compute the orbits of the symplectic group Sp2n on partial flag varieties GL2n/P and on partial flag varieties enhanced by a vector space, C ×GL2n/P . This extends analogous results proved by Matsuki on full flags. The general technique used in this paper is to take the orbits in the full flag case and determine which orbits remain distinct when the full flag variety GL2n/B is projected down to the partial flag variety GL2n/P . The recent discovery of a connection between abstract algebra and the classical combinatorial Robinson-Schensted (RS) correspondence has sparked research on related algebraic structures and relationships to new combinatorial bijections, such as the RobinsonSchensted-Knuth (RSK) correspondence, the “mirabolic” RSK correspondence, and the “exotic” RS correspondence. We conjecture an exotic RSK correspondence between the orbits described in this paper and semistandard bi-tableaux, which would yield an extension to the exotic RS correspondence found in a paper of Henderson and Trapa.
منابع مشابه
Poisson Structures on Affine Spaces and Flag Varieties
The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...
متن کاملPoisson Structures on Affine Spaces and Flag Varieties . Ii
The standard Poisson structures on the flag varieties G/P of a complex reductive algebraic group G are investigated. It is shown that the orbits of symplectic leaves in G/P under a fixed maximal torus of G are smooth irreducible locally closed subvarieties of G/P , isomorphic to intersections of dual Schubert cells in the full flag variety G/B of G, and their Zariski closures are explicitly com...
متن کامل2 0 Ja n 20 05 POISSON STRUCTURES ON AFFINE SPACES AND FLAG VARIETIES . I . MATRIX AFFINE POISSON SPACE
The standard Poisson structure on the rectangular matrix variety M m,n (C) is investigated, via the orbits of symplectic leaves under the action of the maximal torus T ⊂ GL m+n (C). These orbits, finite in number, are shown to be smooth irreducible locally closed subvarieties of M m,n (C), isomorphic to intersections of dual Schubert cells in the full flag variety of GL m+n (C). Three different...
متن کاملPoisson Structures on Affine Spaces and Flag Varieties. I. Matrix Affine Poisson Space
The standard Poisson structure on the rectangular matrix variety Mm,n(C) is investigated, via the orbits of symplectic leaves under the action of the maximal torus T ⊂ GLm+n(C). These orbits, finite in number, are shown to be smooth irreducible locally closed subvarieties of Mm,n(C), isomorphic to intersections of dual Schubert cells in the full flag variety of GLm+n(C). Three different present...
متن کاملRegular Orbits of Symmetric Subgroups on Partial Flag Varieties
The main result of the current paper is a new parametrization of the orbits of a symmetric subgroup K on a partial flag variety P . The parametrization is in terms of certain Spaltenstein varieties, on one hand, and certain nilpotent orbits, on the other. One of our motivations, as explained below, is related to enumerating special unipotent representations of real reductive groups. Another mot...
متن کامل